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Abstract
We employ monomer resolved computer simulations of model dendrimer
molecules to examine the significance of many-body effects in concentrated
solutions of the same. In particular, we measure the radial distribution functions
and the scattering functions between the centres of mass of the dissolved
dendrimers at various concentrations, reaching values that slightly exceed the
overlap density of the macromolecules. We analyse the role played by many-
body effective interactions by comparing the structural data to those obtained
by applying exclusively the previously obtained two-body effective interactions
between the dendrimers (Götze et al 2004 J. Chem. Phys. 120 7761). We find
that the effects of the many-body forces are small in general and they become
weaker as the dendrimer flexibility increases. Moreover, we test the validity of
the oft-used factorization approximation to the total scattering intensity into a
product of the form factors and the scattering factors, finding a breakdown of
this factorization at high concentrations.

1. Introduction

Soft matter systems are characterized by the simultaneous existence of two intrinsic structural
length scales: the omnipresent atomic or microscopic scale that is associated with the solvent
molecules and the monomers of the dissolved polymers (if any) and the mesoscopic scale
that characterizes the dissolved macromolecular aggregates as a whole. Depending on the
physical system under consideration, the latter typically covers the range between several
nanometres and micrometres, spanning thereby three orders of magnitude. The former is
rather located in the domain of a few ångströms. In attempting to bridge the scales all the
way from the microscopic to the macroscopic ones, it has been proven very useful to eliminate
the atomic degrees of freedom from view, by performing a statistical mechanical trace over
their degrees of freedom and constructing thereby an effective Hamiltonian that involves the
mesoscopic degrees of freedom only [1]. Although the effective Hamiltonian Heff greatly
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facilitates the transition to the macroscopic scales, both its construction and its interpretation
have to be treated with care: indeed, the effective potential energy function that involves the
mesoscopic degrees of freedom which appear in Heff is not a true interaction potential in the
sense of Hamiltonian mechanics but rather a constrained free energy which arises by taking
the thermodynamic trace of the microscopic ones.

There are a number of subtleties associated with the effective potential energy function
that have to be taken into account when a coarse-grained statistical mechanical treatment of
a soft matter system is employed. Two of them are particularly relevant in the context of
calculating thermodynamic quantities and tracing out phase diagrams. First, the potential
energy cannot, in general, be written as a sum of pair interactions1: the process of
eliminating the microscopic degrees of freedom inadvertently generates higher-order, many-
body potentials [2–4]. Truncating the effective potential energy function at the pair level
constitutes the pair potential approximation, whose validity is not a priori guaranteed and
has to be explicitly checked. And secondly, the contributions to the potential energy are in
general density dependent, the most prominent example of the latter being the Debye–Hückel
effective pair potential that has been extensively employed to model charge-stabilized colloidal
suspensions under certain physical conditions [5]. Sometimes the density dependence of an
effective pair potential hides precisely the effect of many-body forces and then particular care
has to be taken in the ways in which the pair potential is employed, so as to avoid blatant
thermodynamic inconsistencies [6–9].

Many-body potentials are already encountered in the realm of atomic systems, the Axilrod–
Teller interaction [10] being a characteristic example that has been shown to be relevant for the
description of high-precision measurements of the structure factor of rare gases [11]. A formal
decomposition of the effective potential energy function between the particles of one kind in
a binary mixture in which the particles of the other kind are traced out has been given in [3]
and [4]. Unfortunately, the treatment there applies only to mixtures for which the number
densities of the two components can be varied at will, e.g., colloid–polymer or hard sphere
mixtures. It is not applicable to two broad categories of soft matter systems, namely charged
mixtures and solutions of polymers of arbitrary architecture. In the former case, the number
densities of the two components are constrained by the electroneutrality condition. In the
latter, where one specific monomer [12, 13] or the centre of mass of the molecule [14–18] are
chosen as effective, mesoscopic coordinates, the total number of monomers and the number
of effective particles are coupled to each other through the constraint of keeping the number
of monomers per macromolecule fixed.

In charge-stabilized colloidal suspensions, three-body forces are generated by nonlinear
counterion screening. Their effects have been examined by density functional theory and
simulations [19] as well as by numerical solution of the nonlinear Poisson–Boltzmann
equation [20, 21]. It has been found that the three-body forces in this case are attractive [19–21],
a result confirmed by direct experimental measurements using optical tweezers [20, 21]. As
far as polymeric systems are concerned, the triplet forces in star polymer solutions have been
analysed using theory and simulations in [22], where it was found that they play a minor role for
concentrations vastly exceeding the overlap density. For linear chains, on the other hand, the
many-body forces appear to have a more pronounced effect, as witnessed by the considerable
density dependence of the effective pair potential that reproduces the correlation functions
of concentrated polymer solutions [17, 18]. The general functional form of the centre-of-
mass effective interaction between polymer chains was found to preserve its Gaussian form,

1 An important exception, however, is the depletion attraction in colloid–polymer mixtures described by the idealized
Asakura–Oosawa model. In this case, all nth-order polymer-mediated effective interactions between colloids vanish
identically for n � 3 if the polymer-to-colloid size ratio does not exceed 2

√
3/3 − 1. See [2] for details.
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its strength and range being nevertheless modified within a range of ∼10% of their original
values, due to many-body effects [17, 18].

Another polymeric system that serves as a prototype for a tunable colloidal system
that displays a Gaussian, soft effective pair interaction is that of a solution of dendritic
macromolecules, or dendrimers for simplicity [23]. It has been recently shown that
a Gaussian effective pair potential can describe extremely well the scattering intensities
obtained experimentally from concentrated dendrimer solutions [24, 25]. The Gaussian pair
interaction has also been explicitly measured in recent computer simulations that employed two
different coarse-grained models for the microscopic, monomer–monomer interactions [26].
Nevertheless, in the approach of [26] only two dendritic molecules were simulated; hence no
information about many-body forces was gained. In the present work, we address the issue of
the magnitude and importance of many-body effective interaction potentials in concentrated
dendrimer solutions. We do not attempt to derive an explicit decomposition of the potential
energy function into n-body terms, n = 2, 3, 4, . . .; this would require separate simulations of
just n dendrimers. Instead, we explicitly simulate a large number of interacting dendrimers at
the microscopic level simultaneously. We measure thereby the pair correlation functions in the
concentrated system directly and we compare the result with the one obtained by simulating
the same number of dendrimers as effective entities interacting exclusively by means of pair
potentials. The discrepancies in the results from the two approaches for the correlation
functions yield then information regarding the importance of the many-body forces of all
orders. We find that the many-body effects are of minor importance, especially for flexible
dendrimers.

The rest of the paper is organized as follows. In section 2 we present our model and the
simulation details. In section 3 we present our results for the correlation functions derived
by the two approaches mentioned above and we discuss the magnitude and origin of their
discrepancies. In section 4 we turn our attention to the issue of the interpretation of the total
scattering intensities from concentrated dendrimer solutions, and in particular to the question
of the validity of the so-called factorization approximation of the latter as the product of the
form factor and the structure factor, discussing the limits of applicability of such an approach.
Finally, in section 5 we summarize and conclude.

2. The model and simulation details

In this work, we focus exclusively on dendrimers of the fourth generation (G4). We model the
macromolecules at the monomer level using a simplified model that pictures every monomer
as a hard sphere of diameter σ . The bonding between the connected monomers is modelled by
flexible threads of maximum extension σ(1 + δ). In detail, the potential between disconnected
monomers is given by

VHS(r) =
{

∞ for r/σ < 1

0 for r/σ > 1,
(1)

whereas bonded monomers interact via the potential

Vbond(r) =




∞ for r/σ < 1

0 for 1 < r/σ < 1 + δ

∞ for r/σ > 1 + δ.

(2)

The quantity δ > 0 serves as a control parameter for the dendrimer conformations,
with small δ-values resulting in stiff dendrimers and large values in loose structures. This
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Table 1. The numerical values of the fit parameters of the effective pair potential between the
centres of mass of two G4 dendrimers appearing in equation (3) for two different values of δ. In
the last column the gyration radius Rg,∞ at infinite dilution is also shown.

δ ε0 γ0/σ
2 ε1 γ1/σ

2 r1/σ ε2 γ2/σ
2 r2/σ Rg,∞/σ

0.1 55.75 9.75 5.0 0.9 2.5 0.1 1.5 7.2 2.665
2.0 11.35 33.0 0.8 10.0 3.7 0.0 — — 4.939

bead–thread model was originally introduced by Sheng et al [27], who kept a fixed value
δ = 0.4 and examined the scaling of the radius of gyration of the dendrimers as a function of
generation number and spacer length. The same model has been employed in a previous work
by us, in order to systematically examine the evolution of the dendrimers’ conformational
properties with the generation number G [28]. By comparing the results for various values of
the parameter δ and by performing a further comparison with results from a different model,
we have shown that the conformational properties of single dendrimers are insensitive with
respect to the details of the microscopic model. Moreover, this very simple, coarse-grained
model reproduces the experimental scattering data for isolated dendrimers very well [28]. As
we are only interested in static properties, we also allow ‘ghost chains’, i.e., crossings of bonds
occurring for δ �

√
2 − 1 ≈ 0.414 are possible. Monte Carlo simulations of this model are

very fast, as there is no need to calculate energies; one only needs to check for overlaps, and
additionally whether the conditions of the maximal bond extension are fulfilled. If one of
these conditions is violated, the trial move is rejected in any case, so the search for further
overlaps can be aborted. Furthermore, due to the very short range of the hard sphere interaction,
neighbour lists are very effective.

The effective pair interaction potential between the centres of mass of two G4 dendrimers
has been determined with the help of configuration-biased Monte Carlo simulations of this
model in [26]. The strength of the interaction between dendrimers can be tuned by varying the
number of generations or the parameter δ. Denoting by r the centre-of-mass separation, the
δ-dependent effective pair potential V (2)

eff (r; δ) has been found to have a Gaussian form with
small, additional corrections. In particular, it can be fitted by the function

β V (2)

eff (r; δ) = ε0 exp

(
−r2

γ0

)
+ ε1 exp

[
− (r − r1)

2

γ1

]
− ε2 exp

[
− (r − r2)

2

γ2

]
, (3)

where β = (kBT )−1 with Boltzmann’s constant kB and the absolute temperature T ; the
numerical values of the various fit parameters, depending on the choice of δ, are given in
table 1. Note that the precise values of the fit parameters are slightly different to those given
in [26], since there we employed a more constrained fit by setting γ0 = 4R2

g,∞/3, with the
radius of gyration Rg,∞ of the dendrimers at infinite dilution, and ε2 = 0. The gyration radius
is also shown in the last column of table 1. Here, we considered G4 dendrimers with two
different values, δ = 0.1 and 2.0, representing the two extreme cases studied in [26]. The
dominant features of both the pair interaction and the concomitant correlation functions are
described by the first Gaussian term on the right-hand side of equation (3); the two additional
terms, proportional to ε1 and ε2, just provide small corrections.

Let ρ = N/� be the number density of a sample containing N dendrimers enclosed in
the volume �. The definition of the overlap density ρ∗ of a dendrimer solution requires some
care, as it is not a sharply defined quantity. Previous simulation studies with this system [28]
have revealed that the monomer density profiles around the dendrimer’s centre of mass decay
to zero at a distance rc

∼= 1.5 Rg,∞. Motivated by this fact, we envisage every dendrimer as a
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‘soft sphere’ of radius rc and define the overlap density through the relation2

4π

3
ρ∗r3

c = 1. (4)

Moreover, we introduce the diameter of gyration at infinite dilution, τ ≡ 2Rg,∞, as the
characteristic mesoscopic length scale to be used to introduce a dimensionless expression for
the number density, ρτ 3. In these terms, the overlap density of equation (4) above is given by
ρ∗τ 3 = 0.566. The highest density in the simulation was ρmaxτ

3 = 0.605, slightly exceeding
the overlap value, since ρmax = 1.07ρ∗.

For both values of δ, ten different concentrations were simulated, in particular at
the densities ρ/ρmax = 0.1, 0.2, . . . , 1.0. Periodic boundary conditions were employed
throughout. At all densities, systems of 500 dendrimers were simulated, whereby each
dendrimer consists of ν = 62 monomers, and the size of the simulation box was changed in
order to modify the dendrimer number density. The minimum box length was Lmin = 9.384 τ ,
yielding a system with the density ρmax. The equilibration criterion for the system at hand
requires some care, as there are is no internal energy in the microscopic model, since all
interactions are either zero or infinity. We therefore took advantage of the fact that the effective
pair interaction V (2)

eff (r; δ) between the centres of mass is known and given by equation (3) with
the parameters given in table 1. Hence, we chose to monitor the total effective pair potential
energy U (2)(N; δ) given by

U (2)(N; δ) = 1
2

N∑
i=1

N∑
j �=i

V (2)

eff (|ri − r j |; δ), (5)

where ri, j denotes the position of the i, j th centre of mass.
Two different starting configurations were tried. In the first one, the centres of mass

of dendrimers possessing identical microscopic conformations were placed at the vertices
of an fcc lattice, which was achieved without violation of the excluded volume conditions.
This procedure is particularly useful especially at the highest density, ρmax, where a random
distribution of the centres of mass will result with high probability in a forbidden state with
monomer overlaps. The system was then equilibrated, monitoring U (2)(N; δ) described
above. In the second one, the dendrimers’ centres of mass were placed in a random
arrangement. Although this procedure requires a large number of failed attempts before an
allowed configuration is found, especially at high densities, such configurations are possible.
Once again, we monitored the total effective pair potential energy during the equilibration
period, finding that it converges to the same value as the one obtained from the fcc initial state.
In this way, sufficient equilibration of the system was guaranteed. Finite-size effects were
checked by selectively simulating some systems with 256 of the dendrimers, in a box having a
correspondingly smaller volume, so that the same density is achieved, and finding agreement
between the two attempts.

For δ = 0.1, Nequil = 107 MC steps were used to equilibrate the system, and about
Nrun = 2 × 108 steps to gather statistics. Statistical averages were calculated every
Nmeas = 10 000 MC steps. For δ = 2.0, where a much larger random displacement for the
monomers can be used, the equilibration phase consisted of Nequil = 106 steps and statistical
averages were calculated every Nmeas = 1000 steps over a period of Nrun = 2×108 steps. The
quantities measured were monomer profiles around the centres of mass, the radial distributions
functions of the latter, radii of gyration, form factors, structure factors from the centres of mass
and total scattering intensities; all these quantities will be precisely defined in the sections
that follow.
2 In the literature, there are alternative definitions. For polymer chains, for instance, the definition 4π

3 ρ∗ R3
g = 1 was

used in [17].
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Figure 1. A snapshot from the monomer resolved simulation of dendrimers. The monomers are
rendered as spheres of diameter σ . Here, dendrimers with threads characterized through δ = 0.1
at a density ρτ 3 = 0.0605 are shown. Note that only a part of the simulation box is shown, which
has the same size as the full box depicted in figure 2.

Figure 2. As figure 1 but at density ρτ 3 = 0.605. Here the complete simulation box is shown.

In figures 1 and 2, we show simulation snapshots of the monomer resolved simulations
for the lowest and the highest density for the thread length δ = 0.1. (For clarity, in figure 1 we
show only a section of the simulation box of the same size as in figure 2.) Although at figure 1
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individual dendrimer molecules can still be resolved, since the density is much smaller than
ρ∗, in figure 2 this is no longer possible. Here, ρ = 1.07ρ∗ and the whole system appears as a
dense solution of monomers, in which the individual character of each macromolecule is lost.
We will return to the implications of this in section 4.

In addition, a different kind of Monte Carlo simulation was also carried out, in which
the monomers were not explicitly resolved. Instead, the dendrimers were replaced entirely by
their centres of mass, which were then treated as effective, soft particles interacting exclusively
by means of the pair potential of equation (3). Accordingly, we call this approach an effective
simulation. As all monomers have dropped out of sight in the effective approach, it is only
possible to measure quantities pertaining to the centres of mass, i.e., their radial distribution
functions and structure factors. Comparison of the results regarding these quantities that are
obtained through the two different kinds of simulations yields important information by way
of testing whether the pair potential approximation is meaningful.

3. Comparison between the monomer resolved and the effective simulations

Each dendrimer of the fourth generation consists of ν = 62 monomers. Let α, β be monomer
indices within a given dendrimer, whereas i , j are integers describing the dendrimer molecules
as whole entities. In particular, let ri stand for the position of the centre of mass of the i th
dendrimer, Ri

α denote the position vector of the αth monomer in the i th dendrimer and ui
α

stand for the same quantity but now measured in a coordinate system centred at ri . Obviously,
it holds that

Ri
α = ri + ui

α. (6)

In the monomer resolved simulation, the following quantity was measured: the radial
distribution function g(r) between the centres of mass, defined as

g(r) = 1

N

〈
N∑

i=1

N∑
j �=i

δ(r − ri j)

〉
, (7)

where 〈· · ·〉 denotes a statistical average and ri j = ri − r j . Related to this quantity is the
structure factor S(q) that describes the correlations between the centres of mass in reciprocal
space and it is given by

S(q) = 1

N

〈
N∑

i=1

N∑
j=1

exp[−iq · (ri − r j)]

〉
. (8)

Note that S(q) and g(r) are related by a Fourier transformation [29]

S(q) = 1 + ρ

∫
d3r exp[−iq · r][g(r) − 1]. (9)

Moreover, we took advantage of the microscopic nature of the simulation to measure the
dendrimers’ form factor F(q) at every simulated density ρ. This quantity is expressed by the
relation

F(q) = 1

N

N∑
i=1

1

ν

〈
ν∑

α=1

ν∑
β=1

exp[−iq · (ui
α − ui

β)]

〉
. (10)

Another quantity of interest is the monomer distribution around the centre of mass, ξ(u), which
can again be measured at any desired overall density and is given by the expression

ξ(u) = 1

N

N∑
i=1

〈
ν∑

α=1

δ(u − ui
α)

〉
. (11)
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The overall size of the dendrimer is characterized by its radius of gyration Rg, which was
measured in the simulation by calculating the quantity

Rg = 1

N

N∑
i=1

√√√√1

ν

〈
ν∑

α=1

ui
α · ui

α

〉
. (12)

In equations (10)–(12) above, the summand in the sum over i is the corresponding quantity
(form factor, density profile and radius of gyration, respectively) for the i th dendrimer. The
additional summation over i and the division by the total number of dendrimers corresponds
to an additional average over all dendrimers. Since all macromolecules are equivalent, the
expectation values are identical for every summand. Finally, we also measured the scattering
function I (q) of the concentrated solution, which corresponds to the coherent contribution of
the total scattering intensity in a SANS experiment, under the assumption that all monomers
possess the same scattering length density [30–33]. This is given by the equation

I (q) = 1

Nν

〈
N∑

i=1

N∑
j=1

ν∑
α=1

ν∑
β=1

exp[−iq · (Ri
α − R j

β)]

〉
, (13)

i.e., it is the total coherent scattering intensity from all monomers of the system.
In the effective picture,all information regarding the monomers’ degrees of freedom is lost;

hence in the effective simulation we can only measure the corresponding radial distribution
function geff(r) and the structure factor Seff (q) of the centres of mass. These are given by
equations (7) and (8) above but with the averages now performed with the effective Hamiltonian,
i.e.,

geff(r) = 1

N

〈
N∑

i=1

N∑
j �=i

δ(r − ri j)

〉
Heff

, (14)

and

Seff (q) = 1

N

〈
N∑

i=1

N∑
j=1

exp[−iq · (ri − r j)]

〉
Heff

. (15)

The effective HamiltonianHeff involves the momenta pi and positions ri of the centres of mass
only and contains exclusively pair interactions, i.e.,

Heff =
N∑

i=1

p2
i

2m
+

1

2

N∑
i=1

N∑
j �=i

V (2)

eff (|ri − r j |; δ), (16)

where m is the dendrimers’ mass, which is irrelevant as far as static quantities of the system
are concerned. A particular property of the effective description of a complex system is that
it leaves all correlation functions between the coarse-grained degrees of freedom invariant
provided that the mapping into the effective system is exact [1]. In other words, if the effective
Hamiltonian contains the contributions to the effective potential at all orders, it makes no
difference whether one calculates quantities such as g(r) or S(q) in the original, microscopic
description or in the coarse-grained one. As our effective Hamiltonian Heff is truncated at the
pair level, the deviations between g(r) and geff(r) or, equivalently, between S(q) and Seff(q)

will be a measure of the importance of the neglected many-body terms in equation (16).
Representative results comparing between the two approaches are shown in figure 3,

pertaining to the dendrimers with δ = 0.1, and in figure 4, which refers to dendrimers
with δ = 2.0. The length scale used in this plot is the zero-density gyration radius of the
dendrimers, Rg,∞. For clarity, only the results for three different densities obtained from the
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Figure 3. Comparison between the results from the monomer resolved and the effective simulation
of concentrated dendrimers with maximal thread length δ = 0.1 of the bonds. The three different
densities are ρ = 0.1ρmax, 0.5ρmax and ρmax, as indicated on the plots, with ρmaxτ

3 = 0.605.
Results are shown for (a) the radial distribution function g(r) and (b) the structure factor S(q) of
the centre-of-mass coordinates.

monomer resolved simulations are compared to those from the effective ones. At sufficiently
low densities, ρ = 0.1ρmax, the results from the two kinds of simulations are indistinguishable.
Hence the pair potential approximation is an excellent one and many-body forces seem to play
no role there; they can be thus safely ignored. Deviations between the two descriptions arise
nevertheless as the overall concentration of the solution grows. Referring to figure 3(a), we
see that for the δ = 0.1 dendrimers, which have a rather high internal monomer density,
the deviations are already visible (but small) at a density ρ = 0.5ρmax and they become
more pronounced at the highest simulated density, ρ = ρmax. The true radial distribution
function g(r) between the centres of mass shows a more pronounced coordination than the
effective one, geff(r), and this effect is also reflected in the corresponding structure factors.
The peak height of S(q) is higher than that of Seff(q), indicating that the zero-density pair
potential somehow underestimates the strength of the repulsions between the dendrimers’
centres of mass. The relative deviation between the two descriptions as far as the peak height
is concerned are at the highest density about 6%. Much more drastic is the discrepancy of the
S(q → 0) limit, for which S(q → 0) = 0.018, whereas Seff (q → 0) = 0.033. Given the
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Figure 4. As figure 3 but for thread length δ = 2.0.

fact that the S(q = 0) value is proportional to the osmotic isothermal compressibility of the
solution, employing the effective picture can lead here to serious errors in the calculation of
the thermodynamics of the system. Two integrations of the inverse compressibility are needed
in order to obtain the Helmholtz free energy of the solution; hence errors at all lower densities
accumulate in performing such an integration and they can lead to a serious underestimation
of the free energy if the effective picture is employed.

The agreement between the microscopic and the coarse-grained approaches is a lot better
for the case of the δ = 2.0 dendrimers, which possess a much lower internal monomer density
than their δ = 0.1 counterparts. Indeed, as can be seen in figure 4(a), the radial distribution
functions g(r) and geff(r) barely show any difference, all the way up to the maximum density
ρmax. Similar to the case for δ = 0.1, g(r) shows a slightly more pronounced coordination than
geff(r); the difference between the two is nevertheless extremely small. The same holds for
the structure factors S(q) and Seff(q), shown in figure 4(b). Here, even the discrepancy in the
compressibility is very small, with S(q → 0) = 0.132 and Seff(q → 0) = 0.138 at ρ = ρmax.
For dendrimers with a higher degree of internal freedom, the pair potential approximation
holds all the way up to the overlap concentration. In this respect, it is very satisfactory that
it is precisely the model with the value δ = 2.0 that has been found to accurately describe
scattering data from real dendrimers [26].
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Let us now try to obtain some physical insight into the mechanisms that cause the true
correlation functions to show higher ordering than the effective ones. Suppose that the
reason lay in the increasing significance of three-body effective forces. Three-body potentials
arise through three-dendrimer overlaps: the region of space in which three spherical objects
simultaneously overlap is overcounted when one adds over the three pair interactions and it
has to be subtracted anew. Given that any overlap between repulsive monomers gives rise
to a correspondingly repulsive interaction, together with the fact that the contribution from
the triple-overlap region has to be subtracted, this leads to the conclusion that triple forces
should be attractive, as for the case of star polymers [22], as well as self-avoiding polymer
chains [17], for which three-body forces have been measured explicitly3. Yet, an attractive
contribution to the potential energy leads to a reduced effective pair repulsion. On the one
hand, this is intuitively clear and, on the other hand, it can be put into formal terms by making
a density expansion of the density-dependent pair interaction up to linear order in density;
see equation (10) of [17]. Thus, we would then obtain a weakening of the correlations and
an increase of the osmotic compressibility, whereas in figures 3 and 4 exactly the opposite is
true. In order to obtain the true g(r) at ρ = ρmax for the δ = 0.1 dendrimers, a renormalized
effective pair potential Ṽ (2)

eff (r; δ, ρ) can be employed that is more strongly repulsive than
the original one, V (2)

eff (r; δ); as a matter of fact, we were able to reproduce g(r) at ρmax by
using Ṽ (2)

eff (r; δ = 0.1, ρmax)
∼= 1.2 V (2)

eff (r; δ = 0.1). A similar effect has been observed for
polymer chains [17], for which the density-dependent, renormalized pair potential necessary
to reproduce g(r) at high concentrations was found to be more repulsive than the one that holds
at ρ = 0, whereas, at the same time, the correction arising from triplet forces alone goes in the
opposite direction, weakening the pair repulsions.

The above considerations indicate that the deviations between g(r) and geff(r) are a
genuinely many-body effect that arises from the high concentration of the solution per se and
cannot be attributed to three-body forces alone. In particular, the presence of many dendrimers
surrounding a given one in the concentrated solution gives rise to a deformation of the dendrimer
itself. To corroborate this statement, we have measured the concentration-dependentmonomer
density profiles ξ(u) around the dendrimers’ centre of mass, given by equation (11). Results
are shown in figure 5(a) for the case δ = 0.1 and in figure 5(b) for the case δ = 2.0. It can
be seen that as a result of the crowding of the dendrimers at the highest concentration, the
monomer profiles become slightly shorter in range and they grow in height; in other words, the
dendrimers shrink as a result of the increased overall concentration, as is also witnessed by the
reduction of their radius of gyration shown in figure 6. The molecules that effectively interact
are stiffer at higher densities than at lower ones; their internal monomer concentration grows
with ρ and as a result of this deformation, the interaction between two dendrimers becomes
more repulsive than at zero density.

The above claim is supported by the fact that the effect of the concentration on the pair
interaction is much more pronounced for the dendrimers with the short thread length than for
those with the longer one. Although the monomer profiles for both dendrimer kinds grow
with ρ, the internal monomer concentration for the stiffer dendrimers is much higher than
the one for the softer ones. A concentration-induced increase of ξ(u) has a much stronger
effect for the effective interaction of the stiff dendrimers than for the soft ones, since it occurs
at a scale of σ 3ξ(u) ∼ 0.4 for the former but at a scale of σ 3ξ(u) ∼ 0.1 for the latter; see
figure 5. The monomer beads are modelled here as hard spheres. The change in the free

3 It is intriguing, in this respect, that the three-body forces are also attractive for charged colloids; see [20] and [21].
However, in the latter case the many-body forces arise through nonlinear counterion screening and the corresponding
rearrangements of the counterion clouds; hence a direct analogy with the case at hand cannot be made.
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Figure 5. The radial monomer density profiles ξ(u) (equation (11)) of the dendrimers around their
centres of mass at infinite dilution (ρ = 0) and at the highest density ρ = ρmax = 1.07ρ∗ , as
indicated on the plots. (a) For model dendrimers with thread length δ = 0.1 and (b) for δ = 2.0.
Note the shrinkage and growth of the profiles.

energy of a hard sphere fluid upon an increase of the local density is highly nonlinear and
grows rapidly with increasing packing fraction; hence the effect is much more pronounced for
the case δ = 0.1 than for the case δ = 2.0.

Another way of expressing the vast discrepancy in monomer crowding between the two
systems is to look at the monomer packing fraction ηm. As there are ν monomers per dendrimer,
this quantity is given by the expression

ηm = π

6
νρτ 3

(σ

τ

)3
. (17)

For both kinds of dendrimers, ν = 62 and ρmaxτ
3 = 0.605. Yet the ratio σ/τ has the value 0.188

for δ = 0.1 and 0.101 for δ = 2.0; see the last column of table 1. Accordingly, at ρ = ρmax we
obtain ηm = 0.13 for δ = 0.1 but ηm = 0.02 for δ = 2.0. The soft dendrimers have a much
lower monomer packing fraction at ρ∗ than the stiffer ones, a result that can be traced to the fact
that their radius of gyration is larger4. Thus, we conclude that the density dependence of the
pair interaction can be traced back to the shrinking of the dendrimers, a phenomenon that leads

4 This is characteristic for non-compact objects: for polymer chains, e.g., one obtains ηm ∼ R−4/3
g at the overlap

concentration [1].
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Figure 6. The dependence of the dendrimers’ radius of gyration on the solution density for the two
kinds of model macromolecules, as indicated in the legend.

to increased crowding of the monomers in their interior. This deformation is nevertheless weak
and therefore the dilute-limit effective pair potential turns out to be remarkably successful in
describing even highly concentrated dendrimer solutions.

4. Total scattering intensities and the factorization approximation

In this section we turn our attention to a different question,which is however related to the issues
discussed above, namely to the interpretation of scattering data from concentrated dendrimer
solutions. As a first step, we consider the form factor F(q), defined by equation (10). Clearly,
F(q) expresses the intramolecular correlations between the monomers belonging to a certain
dendrimer. In scattering from an infinitely dilute solution, F(q) offers the only contribution
to the coherent scattering density. Since all the information about the monomer correlations
is encoded in F(q), great experimental effort is devoted to the determination of this quantity.
At low values of q , q Rg,∞ � 1, the form factor delivers information about the overall size of
the molecule, whereas at higher values of the scattering wavevector, q ∼ 1/a, where a is the
monomer length, information about the monomer correlations and the fractal dimension of the
object is hidden [1, 33, 34].

Although F(q) is experimentally measured at the limit ρ → 0, the same quantity can be
defined at any density. At arbitrary concentrations, F(q) will in general change with respect to
its form at infinite dilution, due to possible deformations of the macromolecules. In figure 7 we
show the form factors for the two model dendrimers at the lowest and at the highest simulated
densities. It can be seen there that there is only a small change in both cases, which takes the
form of a slight extension of F(q) to higher q-values as the concentration increases. This is
consistent with the shrinkage of the dendrimers and the corresponding decrease of the gyration
radius. Indeed, in the Guinier regime, q Rg < 1, the form factor has a parabolic profile,
F(q) ∼= N[1 − (q Rg)

2/3], and a reduction of Rg manifests itself as a swelling in q-space and
vice versa [35].

Let us now turn our attention to the total coherent scattering intensity from all monomers,
I (q), given by equation (13). It is clear from its definition that I (q) can also be measured in the
monomer resolved simulation and this has been done for both dendrimer species, characterized
by the maximum thread extensions δ = 0.1 and 2.0. In attempting to model complex polymeric
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Figure 7. The form factors measured in the monomer resolved simulations for one isolated
dendrimer molecule (ρ = 0, solid line) and at the highest density (ρ = ρmax, dotted line). The
model dendrimers have maximum thread length (a) δ = 0.1 and (b) δ = 2.0.

entities as soft colloids, it is a common procedure to separate the intramolecular from the
intermolecular correlations and to write down approximations for the quantity I (q) in which the
two kinds of correlations appear in a factorized fashion. Here we are going to put this approach
to test and work out the limits of its validity as far as dendritic molecules are concerned. A
similar test has been carried out by Krakoviak et al [36] who compared results from the PRISM
model for polymers with simulations and with the factorization ansatz.

As a first approximate step, one assumes that the intramolecular conformations and centre-
of-mass correlations decouple from each other. Correspondingly, equation (13) takes the
approximate form

I (q) ∼= 1

Nν

N∑
i=1

N∑
j=1

ν∑
α=1

ν∑
β=1

〈exp[−iq · (ri − r j)]〉〈exp[−iq · (ui
α − u j

β)]〉. (18)

The approximation inherent in equation (18) above is a reasonable one for dendrimers. Indeed,
as has been shown in [37], the monomer degrees of freedom are correlated at length scales ∼σ ,
whereas for the overall densities ρ considered here, the centres of mass are correlated at lengths
at least ∼Rg and the two are well separated from each other. Hence, at the wavevector scale
qCM ∼ 1/Rg at which the centre-of-mass S(q) shows structure, the dendrimers still appear
as compact objects and the internal fluctuations can be decoupled from the intermolecular
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ones. The second approximation is now the following. Suppose that we are at sufficiently
low densities, so that close approaches between the centres of mass of the dendrimers are very
rare and they carry therefore a negligible statistical weight. Then, since monomers belonging
to different dendrimers stay far apart, it is reasonable to assume that the deviations from their
respective centres of mass are uncorrelated. In this case, one can approximately write

1

ν

ν∑
α=1

ν∑
β=1

〈exp[−iq · (ui
α − u j

β)]〉 ∼= 1

ν

ν∑
α=1

ν∑
β=1

〈exp(−iq · ui
α)〉〈exp(iq · u j

β)〉

= 1

ν
〈ξ̂q〉〈ξ̂−q〉, (19)

where ξ̂q is the Fourier transform of the monomer density operator ξ̂ (u) around the centre of
mass of an arbitrary dendrimer5:

ξ̂ (u) =
ν∑

α=1

δ(u − ui
α). (20)

Clearly, the right-hand side of equation (19) has no dependence on the dendrimer index.
At the same time, it has been shown in [37] that the product ν−1〈ξ̂q〉〈ξ̂−q〉 is an excellent
approximation for the form factor F(q) of the dendrimers, deviations from the exact expression
in equation (10), F(q) = ν−1〈ξ̂q ξ̂−q〉, appearing only at high q-values that are unreachable in
a typical SANS experiment. The approximation inherent in equation (19) has been derived for
monomers belonging to different dendrimers (i �= j) and now, in view of the results of [37],
it can also be applied to the case i = j . Putting everything together, we obtain

1

ν

ν∑
α=1

ν∑
β=1

〈exp[−iq · (ui
α − u j

β)]〉 ∼= F(q). (21)

Equations (18) and (21) now yield the oft-employed factorization approximation:

I (q) ∼= S(q)F(q), (22)

whose validity will be tested in what follows.
The assumptions that went into the derivation of equation (22) above become exact

when the particles from which one scatters are rigid colloids [38], in which case individual
scattering centres are devoid of a fluctuating nature. In this context, it is important to note
that there is an analogue of the factorization approximation that is applied in the theory of
concentrated polymer solutions and carries the name ‘rigid particle assumption’ [36, 39].
Here, one starts from equation (18) and assumes that monomer–monomercorrelations between
monomers belonging to different polymers are identical to the intramolecular correlations in
any chain [36]. Under this assumption, the second factor on the right-hand side of equation (18)
above takes the form

1

ν

ν∑
α=1

ν∑
β=1

〈exp[−iq · (ui
α − u j

β)]〉 ∼= 1

ν

ν∑
α=1

ν∑
β=1

〈exp[−iq · (ui
α − ui

β)]〉 = F(q), (23)

and, in conjunction with equation (18), the factorization approximation of equation (22) follows
once again. Krakoviak et al tested the validity of equation (22) for polymer solutions, finding
that it breaks down for high polymer densities [36].

We have put the validity of equation (22) to test strongly by comparing the directly
measured total coherent scattering intensity I (q) with the product F(q)S(q), where for the
latter quantity the two factors are the ones measured in the same simulation. Results are shown

5 The quantity ξ(u) defined in equation (11) is simply the expectation value of the operator ξ̂ (u).
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Figure 8. The total coherent scattering intensity I (q) (equation (13)) for concentrated δ = 0.1
dendrimer solutions, compared with the result from the factorization approximation, equation (22),
at different overall concentrations ρ. (a) ρ = 0.1ρmax and (b) ρ = 0.5ρmax. Results using both the
form factor F(q) at the given density and its counterpart at infinite dilution, F0(q), are shown for
the factorization approximation.

in figures 8 and 9(a) for the δ = 0.1 dendrimers as well as in figures 10 and 11(a) for the δ = 2.0
dendrimers. It can be seen that the factorization approximation is valid at the lowest density
shown (ρ = 0.1ρmax) but that its quality becomes poorer as the concentration of the solution
increases. A dramatic breakdown can be seen in figure 9(a) for the more compact dendrimers,
whereas the breakdown is also clear (but less spectacular) for the more open dendrimers;
figure 11(a).

We can now trace back to the physical origins of the breakdown of the factorization
approximation, equation (22). There is first of all a weak breakdown of the first assumption,
equation (18), in which the centre-of-mass coordinates were decoupled from the fluctuating
monomers. Indeed, were this approximation to be true, then the form factor F(q) would
remain unchanged at all concentrations. This is however not the case, as the results in
figure 7 demonstrate: the dendrimers shrink as ρ grows. Yet, the difference between
the infinite-dilution form factor, F0(q) and its counterpart at finite density, F(q), is not
sufficient to account for the failure of the factorization approximation. As can be seen in
figures 8(b), 9(a), 10(b) and 10(a), the product S(q)F(q) is in even worse agreement with I (q)
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Figure 9. (a) As figures 8(a) and (b) but for ρ = ρmax. (b) The true structure factor S(q) between
the centres of mass at ρ = ρmax, as obtained from the monomer resolved simulations, compared
with the apparent structure factor Sapp(q) = I (q)/F0(q).

than the product S(q)F0(q). The reason for the breakdown of equation (22) lies in the
assumption inherent in deriving the approximation of equation (21), namely that fluctuations
between monomers belonging to different dendrimers are uncorrelated. At sufficiently low
densities ρ, this is a reasonable assumption. However, in approaching the overlap density
ρ∗, it does not hold any more. As monomers from different dendrimers begin to crowd with
one another, their coordinates with respect to their centres of mass become more and more
strongly correlated and equation (21) loses its validity. In this respect, it is not surprising
that the breakdown of equation (22) is more dramatic for the δ = 0.1 dendrimers than for the
δ = 2.0 ones. In the former case, the monomer packing fraction is higher and the corresponding
correlations between monomers belonging to different molecules stronger than in the latter.
To put it in more pictorial terms: at the overlap concentration it is not any longer possible
to tell to which dendrimer a monomer belongs; see figure 2. A clear separation between
intra-dendrimer and inter-dendrimer fluctuations is not longer possible.

We finally discuss the consequences of the above findings for the interpretation of
scattering data obtained from concentrated dendrimer solutions. The validity of equation (22)
is often taken for granted: the form factor F(q) is measured in a SANS or SAXS experiment at
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Figure 10. As figure 8 but for δ = 2.0 dendrimers.

low concentrations and extrapolated to infinite dilution to obtain the quantity F0(q). Thereafter,
the measured coherent scattering intensity at any concentration, I (q), is divided by F0(q), the
result being interpreted as the structure factor of the system. In order to differentiate it from
S(q), we emphasize here that this is only an apparent structure factor Sapp(q), given by

Sapp(q) = I (q)

F0(q)
. (24)

In figures 9(b) and 11(b) we compare the apparent structure factors for the two dendrimer
species at the highest simulated density with the true ones. It can be seen that the process of
applying equation (24) has the effect of producing apparent structure factors that are everywhere
lower than the true ones and they even fail to reach the asymptotic value unity in the range
considered.

Such structure factors from concentrated dendrimer solutions have been published in [40]
and [41], in which they have been correctly termed ‘apparent’. It is important here to point
out that apparent structure factors can lead to false conclusions regarding the validity of the
pair potential approximation in mesoscopic theories of dendrimer solutions. Indeed, as we
have explicitly shown in this work, many-body effective potentials play only a minor role
in concentrated dendrimer solutions; therefore, one can obtain accurate structure factors from
theory by working with a density-independent pair potential. If, however, these structure factors
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Figure 11. As figure 9 but for δ = 2.0 dendrimers.

were to be compared with the apparent experimental quantities Sapp(q), discrepancies of the
kind shown in figures 9(b) and 11(b) would show up. It would be then possible to argue that
these discrepancies are due to the breakdown of the pair potential approximation but, as we
have shown here, this conclusion would be unwarranted. The reason for the disagreement
between theory and ‘experiment’ would, in this case, lie in the employment of an erroneous
approximation, equation (22), in deriving apparent structure factors from the experimental
data. It is worth noting that Krakoviak et al [36] reached similar conclusions for the case of
polymer solutions, although they did not formally introduce an apparent structure factor into
their considerations.

5. Summary and concluding remarks

We have carried out extensive, monomer resolved and effective simulations of model
dendrimers in order to calculate correlation functions between the centres of mass of the
macromolecules and the individual monomers themselves. By comparing the real-space
correlation functions obtained by the two simulation approaches, we found that many-body
effective potentials play a minor role up to the overlap density and they can be altogether
ignored for open dendrimers with long bond lengths. Our finding for the scattering intensity,
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on the other hand, is that the factorization approximation of this quantity into a form factor and
a structure factor loses its validity as one approaches the overlap concentration. Structure
factors that are obtained from experimental data by dividing the scattering intensity by the
form factor can be seriously in error.

It appears, therefore, that the extraction of an accurate structure factor from concentrated
dendrimer solutions is extremely difficult as one approaches the overlap concentration. We
anticipate that this result is also valid for other ‘polymeric colloids’ such as star-shaped
polymers and brushes. One strategy for circumventing this inherent difficulty is to use the
labelling technique, in which a small, inner part of the molecule is protonated and the rest is
deuterated in such a way that the contrast between the outermost part of the molecule and the
solvent vanishes. In this way, only the innermost part of the molecule will have contrast with
the solvent and scatter coherently. Thus, one can reach concentrations for the whole system
that exceed ρ∗, whereas the labelled parts are still nonoverlapping. Such a technique was
successfully applied, e.g., to star polymers [12].
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[30] Pötschke D, Ballauff M, Lindner P, Fischer M and Vögtle F 1999 Macromolecules 32 4079



Correlations in concentrated dendrimer solutions S1797
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